

STRATEGIC LARGE SCALE USA ANTIMONY ACQUISITION

HIGHLIGHTS

- Trigg has executed a purchase agreement to acquire 49 unpatented lode mining claims covering the strategic **Antimony Canyon Project** (ACP) in Utah, USA the world's top-ranked mining investment jurisdiction according to the latest Fraser Institute Survey.
- ACP is currently the largest and highest-grade antimony project in the USA.¹
- The U.S. Bureau of Mines reported a foreign resource estimate^{*} of **12.7 million metric tons** grading **0.79% antimony for 100,300 tons of contained antimony**.²
- The mining claims provide Trigg with **immediate exploration access** in which Trigg will swifty move to validate the foreign estimates and support promotion of a JORC 2012-compliant Mineral Resource Estimate (see *Cautionary Statement*).
- Antimony Canyon features several historically producing high-grade mines, including but not limited to the following: (See Figure 1 for diagram)
 - Emma Mine averaging **1.5% Sb** with considerable zones averaging **2.2% Sb**
 - Mammoth mine averaging **1.5% Sb** with considerable zones averaging **2.4% Sb**
 - Nevada Mine averaging **2.2% Sb** with considerable zones averaging **3.6% Sb**
- The foreign resource estimate is based on a limited number of mines within the camp; comprehensive assessment of all mineralised trends and legacy workings presents a strong opportunity to define a materially larger resource under modern exploration.
- The acquisition strengthens Trigg's antimony strategy, complementing Wild Cattle Creek and expanding the Company's footprint across tier-one jurisdictions, while advancing both projects simultaneously supported by with a healthy cash balance.

^{*}The foreign estimate is not reported in accordance with the JORC Code. A Competent Person has not done sufficient work to classify the foreign estimate as Mineral Resources or Ore Reserves in accordance with the JORC Code, and it is uncertain that following evaluation and/or further exploration work the estimates will be able to be reported as Mineral Resources or Ore Reserves. See "Cautionary Statement: Foreign Estimate – Antimony Canyon Project" on page 2 for further information in accordance with ASX Listing Rule 5.12.

¹ The foreign resource at Antimony Canyon stands out for its significantly higher grade and larger contained metal content than Stibnite Gold Project (0.24% Sb for 64,000 t; Perpetua Resources, 2021). While several U.S. antimony projects are being explored, most have yet to publish formal Mineral Resource Estimates.

² U.S. Bureau of Mines Report (1949) "Investigation of Coyote Creek Antimony Deposits, Garfield County, Utah", RI 4470, 18 p.

CAUTIONARY STATEMENT: FOREIGN ESTIMATE – ANTIMONY CANYON PROJECT

The Antimony Canyon Project in Garfield County, Utah, contains a historical resource estimate of 12.7 million tonnes at 0.79% antimony (Sb), as reported by the Utah Geological and Mineral Survey in 1975. This estimate is based on work completed prior to the introduction of the JORC Code and is not reported in accordance with the JORC Code (2012 Edition).

A Competent Person has not done sufficient work to classify the foreign estimate as a Mineral Resource in accordance with the JORC Code. It is uncertain whether, following evaluation or further exploration, the estimate will be able to be reported as a Mineral Resource in accordance with the JORC Code.

Trigg Minerals is not treating this foreign estimate as a current Mineral Resource and advises that it should not be relied upon.

The Company is not aware of any new information or data that materially affects the foreign estimate. Trigg intends to undertake verification work, including data validation and confirmatory drilling, to assess the potential for reporting a JORC-compliant Mineral Resource.

Additional information required under ASX Listing Rule 5.12 is set out in Appendix 1.

Trigg Minerals Limited (ASX: TMG, OTCQB: TMGLF) is pleased to announce the acquisition of 49 unpatented lode mining claims (Appendix 2) over the Antimony Canyon (Coyote Creek) Project in Utah, USA. This acquisition aligns with Trigg Minerals' strategy to establish a robust antimony division in the United States, focusing on open-pit mining opportunities.

The Antimony Canyon Project in Garfield County, Utah, hosts a substantial historical resource estimated at 12.7 million metric tonnes at 0.79% antimony, exceeding 100,000 tonnes of contained antimony (Utah Geological and Mineral Survey, 1975), with exploration upside across both primary ore zones and the extensive debris mantle or 'talus slope' beneath the towering cliffs. Trigg has prioritised these areas for targeted exploration, building on the focus of the 1942 field work and the subsequent 1975 estimate. The 1949 report describes numerous essential deposits and workings scattered over a 5km by 3km area, primarily within unconsolidated sandstone and shale cliffs. Mineralisation occurs as veinlets, lenses, and irregular blebs of stibnite (Sb₂S₃), irregularly distributed within zones of jointing and fracturing along a broad eastwest trend. The canyon's cliff walls, rising to 240 metres above the creek bed, further underscore the scale and structural complexity of this underexplored antimony system.

The Antimony Canyon Project encompasses several historical mines, including Emma-Albion, Mammoth, Stebinite, Gem, Pluto, Stella, Winner, Baltimore-Maryland, and Fault-Slice. The Emma-Albion Mine is recognised as the camp's largest producer. The historical resource estimate is focused on sampling in two areas: the first area comprises parts of the Albion, Emma, and Nevada claims, and the second area included parts of the Stebinite, Stella, and Mammoth claims.

19 May 2025

Figure 1: Ore-bearing zones exposed in cliff faces at the principal historical mines in Coyote Canyon, Garfield County, Utah (modified from Utah Geological and Mineral Survey, 1975).

Andre Booyzen, Managing Director of Trigg Minerals, commented:

"Trigg Minerals is delighted to announce the strategic acquisition of the Antimony Canyon Project, an asset that significantly enhances our antimony portfolio. The addition of Antimony Canyon underscores our commitment to establishing a robust presence in the critical minerals sector, explicitly addressing the rising global demand for antimony.

The project's attractive characteristics, including historical estimates, a clear pathway to JORC compliance, and a favourable location in a supportive mining jurisdiction, align seamlessly with Trigg Minerals' growth strategy. As we continue to advance our existing projects, this acquisition positions us to become a meaningful domestic supplier of antimony, contributing to greater supply chain security in North America.

Additionally, our recent listing and active trading on the OTC market in the United States (OTC: TMGLF) provide increased visibility and accessibility for North American investors, further supporting our growth trajectory and regional strategic objectives.

We look forward to progressing rapidly with our planned exploration and validation program at Antimony Canyon and delivering tangible value to our shareholders."

STRATEGIC RATIONALE

The acquisition of the Antimony Canyon Project complements Trigg Minerals' existing portfolio, including the Wild Cattle Creek Deposit in NSW. These assets enhance the company's presence in the antimony sector, offering potential for near-term development and production.

BACKGROUND INFORMATION

The Antimony Canyon claims are in Garfield County, Utah, approximately 11 km east of the Antimony township (Figure 2). The canyon hosting the claims is known interchangeably as Antimony Canyon or Coyote Canyon. Project access is via paved roads that transition to forestry roads suitable for vehicles with low clearance.

GEOLOGY AND MINERALISATION

The Antimony Canyon Project is geologically situated within the southeastern margin of the Marysvale volcanic field, an area characterised by complex interactions between sedimentary and volcanic processes. This region lies at the transition between the Basin and Range Province and the Colorado Plateau, resulting in a diverse geological setting conducive to mineralisation.

Stratigraphy and Host Rocks

Antimony mineralisation at Antimony Canyon is primarily hosted within two limey sandstone units near the centre of the Palaeocene Flagstaff Formation, forming a sedimentary package approximately 60 metres thick (Unit Tk* in Figure 2). Most high-grade mineralisation occurs as sub-horizontal, lenticular orebodies and pods positioned above the lowermost sandstone–shale unit, within the more massive overlying sandstone. This sequence is unconformably overlain by the Oligocene to Miocene Bullion Canyon Volcanics, indicating a significant volcanic episode post-dating sedimentation. Structural and stratigraphic relationships suggest that mineralisation was emplaced after deposition of the Flagstaff Formation but before or during the emplacement of the volcanic units.

Mineralisation Characteristics

Antimony mineralisation occurs as irregular lenses, rosettes, and veinlets, typically ranging from just over 1 metre to 7 metres thick. The primary ore mineral is stibnite (Sb_2S_3), present as acicular crystals oriented perpendicular to the veinlets and lenses. Gangue minerals include pyrite, realgar, orpiment, fluorite, quartz, kaolinite, and possibly arsenopyrite. This mineral assemblage reflects a hydrothermal origin, with deposition driven by the circulation of mineral-rich fluids through permeable sandstone units. The deposits represent hydrothermal sandy carbonate replacements linked to Tertiary volcanic activity.

19 May 2025

Figure 2: Project location and claim boundaries over regional geology. The mineralised host unit is shown in lime green (TK₂), with additional mineralisation occurring within the extensive talus slopes below the prominent cliffs.

Historical Context and Resource Estimates

Discovered in 1879, the Antimony Canyon Camp became Utah's largest antimony producer, with intermittent mining activities continuing into the 1960s. The earliest production focused on gathering large fragments of float or 'talus' material, which were initially abundant. Once these surface accumulations were exhausted, mining shifted to high-grade pods exposed along the cliff faces. The Emma-Albion mine is noted as the most significant producer within the district. A 1949 estimate by the Utah Geological and Mineral Survey reported a non-JORC compliant resource of approximately 12.7 million metric tons grading 0.79% antimony. This estimate, based on 541 channel samples, suggests a substantial resource, highlighting the potential for future exploration and development. Although a 500 lb mine dump sample had 3.7% Sb, 600 ppm As, 4.1 ppm Ag, and 79.2% SiO₂ (U.S. Bureau of Mines Report, 1949). Doelling (Utah Geological and Mineral Survey, 1975) suggests an inferred resource based on the same channel samples near the old mines of about 14 million tons at an average grade of 0.75% Sb.

Exploration Potential

The Antimony Canyon Project presents a significant opportunity to expand the historical resource base by incorporating the broader cluster of historical mines within the camp. While the original estimate was limited to sampling across select portions of the Emma, Albion, Nevada, Stebinite, Stella, and Mammoth claims, the project also includes several additional former producers—such as the Gem, Pluto, Winner, Baltimore-Maryland, and Fault-Slice mines—that have yet to be systematically evaluated. Given the scale of historical workings and the demonstrated mineralisation across multiple sites, there is clear potential to define a materially larger resource if all mineralised trends and legacy mine areas are comprehensively assessed under modern exploration standards.

Figure 3: Historical photographs from the Canyon Antimony Project area. Left: the former Emma-Albion Mine, the largest historical operation in the district. Right: stibnite-rich sample from the project area, showing tightly packed acicular stibnite crystals (dark grey) in a calcareous siltstone matrix with yellowish coatings indicative of stibiconite alteration. Images are historical and not indicative of current mineral resources or exploration results.

NEXT STEPS

Trigg Minerals will initiate a comprehensive exploration program at Antimony Canyon, with the immediate priority being to validate and upgrade the historical resource to a JORC-compliant Mineral Resource Estimate. This work will be underpinned by detailed geological mapping, targeted geochemical sampling, modern geophysical surveys and drilling designed to delineate the full extent of mineralisation and assess the project's development potential. Through this program, Trigg remains committed to responsibly advancing its antimony portfolio and supporting the diversification of critical mineral supply chains.

AGREEMENT TERMS

Trigg has entered into a binding agreement to acquire 100% of the shares in Monomatapa Investments Inc, a wholly owned U.S. subsidiary of EV Resources Limited, which holds 49 unpatented mining claims (refer Appendix 2) comprising the Antimony Canyon Project in Utah, USA.

Parties

- **Purchaser:** Trigg Minerals Limited
- **Vendor:** EV Resources Limited, via its wholly owned U.S. subsidiary, Monomatapa Investments Inc

Consideration

Total consideration comprises:

- **Cash Consideration:** AU\$225,000 cash payable at the date of execution of the agreement (Cash Consideration)
- Consideration Shares:
 - AU\$225,000 in fully paid ordinary shares in Trigg to be issued at completion.
 - Shares will be issued at a deemed issue price based on the 15-day VWAP of Trigg shares prior to the announcement of the transaction.
- Deferred Shares:
 - AU\$450,000 in either cash or fully paid ordinary shares in Trigg, subject to shareholder approval (at Trigg's election);
 - Payable on the announcement of a JORC-compliant resource for the project within four years of completion; and
 - If paid in shares:
 - The deemed issue price will be the greater of the 15-day VWAP of Trigg Shares immediately prior to the JORC announcement or \$0.03.
 - If approved, shares to be issued within 60 days of the JORC announcement

Completion

Completion will occur 20 business days after execution, or as otherwise agreed, subject to documentation of the share transfer of Monomatapa Investments Inc to Trigg.

ENDS

The announcement was authorised for release by the Board of Trigg Minerals Limited.

For more information, please contact:

Andre Booyzen Trigg Minerals Limited Managing Director info@trigg.com.au +61 (0) 497 203 678

Kristin Rowe NWR Communications

kristin@nwrcommunications.com.au +61 (0) 404 889 896

REFERENCES

Perpetua Resources, 2021, accessed on 16/05/2025. https://perpetuaresources.com/wp-content/uploads/2021/02/2021-01-28-Stibnite-Gold-Project-Feasibility-Study-Final.pdf

DISCLAIMERS

Competent Persons Statement

The information in this announcement that relates to historical estimates and Exploration Results is based on, and fairly represents, information compiled by Mr Jonathan King, a Member of the Australian Institute of Geoscientists (AIG) and a Director of GeoImpact Pty Ltd, which is engaged by Trigg Minerals Limited.Mr King has sufficient experience relevant to the style of mineralisation, type of deposit, and activity being undertaken to qualify as a Competent Person under the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code). Mr King consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Mr King confirms that the information provided under ASX Listing Rules 5.12.2 to 5.12.7 is an accurate representation of the available data and technical studies relating to the Antimony Canyon Project.

Forward Looking Statements

This report contains forward-looking statements that involve several risks and uncertainties. These forward-looking statements are expressed in good faith and believed to have a reasonable basis. These statements reflect current expectations, intentions or strategies regarding the future and assumptions based on currently available information. Should one or more risks or uncertainties materialise, or underlying assumptions prove incorrect, actual results may vary from the expectations, intentions and strategies described in this announcement. No obligation is assumed to update forward-looking statements if these beliefs, opinions, and estimates should change or to reflect other future developments.

Appendix 1 - Listing Rule 5.12 Foreign Resource Estimate information

Antimony Canyon Project

The information in this announcement relating to the Mineral Resource Estimate for the Antimony Canyon Project is reported in accordance with the requirements applying to historical estimates in the ASX Listing Rules (the "Historical Estimates") and, as such are not reported in accordance with the 2012 edition of the Joint Ore Reserves Committee's Australasian Code for Reporting of Mineral Resources and Ore Reserves ("JORC Code"). The following information is provided in accordance with ASX Listing

Rule 5.12:

1. The source and date of the historical estimates (LR 5.12.1)

The historical mineral resource estimate for the Coyote Creek Antimony Project is sourced from the following:

- Primary Source: *Gault, R.E. and Heyl, A.V. (1949),* "Investigation of Coyote Creek Antimony Deposits, Garfield County, Utah," U.S. Department of the Interior, Bureau of Mines, Report of Investigations 4470. The estimate is based on systematic underground sampling and trenching conducted by the U.S. Bureau of Mines during 1941–42.
- Secondary Source (Summary and Re-publication): *Doelling, H.H. (1975)*, "Geology and Mineral Resources of Garfield County, Utah," Utah Geological and Mineral Survey Bulletin 107. This publication incorporates and republishes the 1949 estimate, presenting a slightly revised figure of 14 million metric tons at 0.75% antimony, containing approximately 105,000 tons of antimony metal, based on broader geological interpretation. Doelling did not conduct new sampling or reassessment he relied entirely on the Bureau of Mines data and clearly stated this in the resource summary section.

These estimates are considered historical in nature, were not reported in accordance with the JORC Code (2012), and should not be relied upon for current economic evaluation without further verification.

2. Whether the historical estimates use categories of mineralisation other than those defined in JORC Code 2012, and if so, an explanation of the differences (LR 5.12.2)

The estimates are historical in nature and were prepared prior to the introduction of the JORC Code; as such, they have not been classified according to current JORC-compliant mineral resource categories.

3. The relevance and materiality of the historical estimates to the entity (LR 5.12.3)

TMG considers the historical estimates to be both material and relevant to the Antimony Canyon Project, as it provides an indication of the project's scale and supports the view that further exploration is warranted to evaluate the mineralisation in accordance with the JORC Code (2012).

4. The reliability of the historical estimates, including reference to any criteria in Table 1 of JORC Code 2012 which are relevant to understanding the reliability of the historical estimates (LR 5.12.4)

The Historical Resource Estimates are not reported in compliance with the JORC 2012 code, although the original work conducted utilised the best standards available at the time of the fieldwork being reported (1941 - 1942, first reported in 1949).

The Competent Person has not undertaken work that could classify the historical estimates as a resource reported in compliance with the JORC 2012 Code. Key differences in methodology include the absence of drilling and a lack of detailed documentation regarding data aggregation and assay procedures. No more recent exploration has been undertaken on the property, and there is no certainty that future work will result in the estimation of a resource that is compliant with the JORC Code (2012), or that any resource will be defined at all. It is further noted that the original work was undertaken by the U.S. Bureau of Mines, a government agency with no commercial interest in the outcome, thereby reducing the likelihood of bias in the reported results.

5. To the extent known, a summary of the work programs on which the historical estimates are based and a summary of the key assumptions, mining and processing parameters and methods used to prepare historical estimates (LR 5.12.5)

Both historical estimates—by the U.S. Bureau of Mines (1949) and the Utah Geological and Mineral Survey (Doelling, 1975)—are based on the same underlying dataset. Doelling explicitly acknowledged this in the resource summary section of his 1975 report.

The U.S. Bureau of Mines, along with the U.S. Geological Survey, conducted the original trenching program in 1941–42 to expose mineralised zones within the favourable sandstone horizon by removing overburden and providing adequate surface exposure. The work included:

• 96 hand-dug trenches, each averaging approximately 2.5 by 2.5 feet (76 cm) in cross section and extending up to 120 feet (40 m) in length.

- Trenches were strategically placed across the mineralised sandstone horizon, along vertical cliff faces, and in areas with known underground workings. Sampling was limited to zones where visible mineralisation was present.
- A total of 541 samples were collected, including 11 bulk dump samples. Most samples were continuous grooves 4–6 inches (10–15 cm) wide, taken across vertical sections approximately 5 feet (1.52 m) in height.
- Each sample was individually assayed at the U.S. Bureau of Mines Experimental Station in Salt Lake City. Selected key assay results were mapped to scale and integrated into geological interpretation maps prepared by the Bureau.

This work formed the basis for the original tonnage-grade estimate reported in 1949 and subsequently referenced by Doelling in 1975 without modification to the dataset.

6. Any more recent estimates or data relevant to the reported mineralisation available to the entity (LR 5.12.6)

No further resource estimates or data relevant to the resource estimation are available.

7. The evaluation and/or exploration work that needs to be completed to verify the historical estimates as mineral resources or reserves in accordance with JORC Code 2012 (LR 5.12.7)

TMG is currently compiling and digitising historical data to generate 3D representations of the original resource positions and geological models. The upcoming work program will begin with a detailed site survey and geological mapping, accompanied by an extensive channel sampling campaign. The outcomes of the 3D modelling exercise will guide the precise number, location, and dimensions of the channels. A sampling protocol will be established to ensure compliance with the JORC Code (2012), and all samples are expected to be processed at American Assay Laboratories in Sparks, Nevada. Track access and drill pad designs will be finalised following the initial survey, with drilling methods to be determined based on the results of the surface sampling program.

8. The proposed timing of any evaluation and/or exploration work that the entity intends to undertake and a comment on how the entity intends to fund that work (LR 5.12.8)

The Exploration work to be conducted to verify the historical estimate as mineral resources will commence once appropriate permissions are secured from the Bureau of Land Management and US Forestry Service. The programme is intended to commence in 2025. The programme will be funded from working capital.

Appendix 2 – Claims

	CLAIM	HOLDER	OWNERSHIP
1	A6	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
2	A7	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
3	A8	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
4	A9	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
5	A10	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
6	A11	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
7	A105	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
8	A106	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
9	A107	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
10	A108	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
11	A109	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
12	A110	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
13	A111	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
14	A112	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
15	A113	Monomatapa Investments Inc (via acquisition from Cody Schad) 100	
16	A114	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
17	A115	Monomatapa Investments Inc (via acquisition from Cody Schad) 100	
18	A116	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
19	A117	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
20	A118	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
21	A119	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
22	A120	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
23	A133	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
24	A134	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
25	A135	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
26	A136	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
27	A137	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
28	A138	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
29	A139	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
30	A140	Monomatapa Investments Inc (via acquisition from Cody Schad)	100

	CLAIM	HOLDER	OWNERSHIP
31	A141	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
32	A142	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
33	A143	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
34	A144	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
35	A145	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
36	A146	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
37	A147	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
38	A200	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
39	A210	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
40	A211	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
41	A219	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
42	A220	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
43	A221	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
44	A222	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
45	A325	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
46	A326	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
47	A327	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
48	A328	Monomatapa Investments Inc (via acquisition from Cody Schad)	100
49	A400	Monomatapa Investments Inc (via acquisition from Cody Schad)	100

APPENDIX 3: JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. 	 Two areas were selected by the Bureau of Mines for detailed sampling in 1941-1942. The first area comprises parts of the Albion, Emma, and Nevada claims, and the second area included parts of the Stebinite, Stella, and Mammoth claims. Mineralised areas other than those mapped and sampled were examined, and most of the large dumps below mine workings were sampled (as bulk samples). Trenching was done across the favourable sandstone horizon in both areas wherever it was necessary to remove overburden to give adequate exposures. Most of the trenching was above and below vertical cliff faces to determine ore limits. Ninety-six (96) trenches averaging 2-1/2 by 2-1/2 feet in cross section and ranging up to 120 feet in length were dug by hand. A total of 541 samples from 96 trenches and eleven bulk samples from old mine dumps were taken. Generally, samples were 4- by 6- inch grooves and represented 5 feet of vertical section across the bed. The trenches were not sampled where mineralisation was not discernible. The Bureau of Mines investigated large number of ore deposits in the United States and Alaska in search for domestic sources of critical minerals during World War II. The USGS cooperated in the work by detailed mapping and assisted in the interpretation of geologic data. The U. S. Bureau of Mines sampling was conducted on the more interesting claims, and, for this reason,

Criteria	JORC Code explanation	Commentary
	 In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 nuch caution must be taken in any mining feasibility study. No new samples taken
Drilling techniques	 Drill type and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, 	No drilling performed

Criteria	JORC Code explanation	Commentary
	by what method, etc).	
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. 	 No drilling performed
	 Measures taken to maximise sample recovery and ensure representative nature of the samples. 	
	 Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and 	• No drilling performed

19 May 2025

Criteria	JORC Code explanation	Commentary
	 metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub- sampling stages to 	 Ninety-six (96) trenches averaging 2-1/2 by 2-1/2 feet in cross section and ranging up to 120 feet in length were dug by hand. A total of 541 samples from 96 trenches and eleven bulk samples from old mine dumps were taken. Generally, trench (or channel) samples were 4- by 6-inch grooves and represented 5 feet of vertical section across the bed (the horizontal mineralisation). The trenches were not sampled where mineralisation was not discernible. Quality control measures are not described within the Bureau of Mines 1949 report, which forms the basis of Table 1. Results for 1 x 500-pound composite beneficiation test sample returned the following results (Bureau of Mines, 1949).

www.trigg.com.au

Criteria	JORC Code explanation	Commentary
	 representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 The sampling method is appropriate given the subvertical exposure of mineralisation on cliff walls. The sampling was systematic but biased towards the more interesting claims: Albion, Emma, and Nevada claims on the southern flank and Stebinite, Stella, and Mammoth claims on the northern flank. Mineralised areas other than those mapped and sampled were examined, and most of the large dumps below mine workings were sampled (comprising the 11 bulk dump samples). Sample sizes were not reported. No new samples taken
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including 	 The assaying methods are not documented in the historical reports. The experimental station of the Bureau of Mines in Salt Lake City performed beneficiation tests on a representative 500 -pound sample of dump ore. Detailed reports of the results of all the test work are recorded at the Salt Lake City Experiment Station, suggests the analytical work was completed at the same facility. However, this could not be verified.

Trigg Minerals Ltd | ACN 168 269 752 A: Level 1, 389 Oxford Street, Mount Hawthorn 6019 E: info@trigg.com.au

Criteria	JORC Code explanation	Commentary
	 instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. 	 Sampling and mapping of several historical workings within Antimony Canyon was undertaken by geologists of the U.S. Geological Survey and Bureau of Mines in 1941 and 1942 Results of the work are reported in Travers 1949 report (R.I.4470) The sampling methods were appropriate and suitable for the style of mineralisation being sought and for the nature of the exposure of the mineralised horizons. Logs and samples were captured on plans and paper, which formed the basis of the associated estimates. No adjustments were recorded as being made to the data.

Criteria	JORC Code explanation	Commentary
	 Discuss any adjustment to assay data. 	
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 	 Claim locations (Figure 2) are in UTM NAD83 (Zone 12) grid system. The mapped locations of known mines are currently inaccurate but will be corrected during modelling. However, the locations of the patented claims containing these workings are well established, and the mineralised zones and trenches have been described in relation to those claim boundaries. Based on this, the Competent Person is satisfied that the resource area is captured within the existing claim package.
	 Specification of the grid system used. Quality and adequacy of topographic control. 	
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation 	 The historical estimates are based on trenching results gathered along the length and through the width of the exposed mineralisation. Trenches were spaced relatively evenly along the exposed mineralisation on the canyon walls and were developed perpendicular to the mineralisation trend. The depth of the deposits was determined through excavation and by accessing underground workings developed along the lode. Historical occurrences and their estimated production values are open-source information (as surficial point data) and not presented as mineral resource estimations.

19 May 2025

Criteria	JORC Code explanation	Commentary
Criteria Orientation of data in relation to geological structure	 procedure(s) and classifications applied. Whether sample compositing has been applied. Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is 	 The Bureau of Mines investigated many ore deposits in the United States and Alaska in search of domestic sources of critical minerals during World War II. The lode systems occur as generally flat-lying lenses and pods exposed along the canyon walls. Sampling was conducted vertically across these exposures, with trenches developed at semiregular intervals (between 40-100 ft apart) along the outcrop's length at each working. Trenches were developed normal to the mineralisation trend. The trenches were not sampled where mineralisation was not discernible. The U. S. Bureau of Mines sampling was conducted on the more interesting claims, and, for this reason,
	considered to have introduced a sampling bias, this should be assessed and reported if material.	much caution must be taken in any mining feasibility study.
Sample security	 The measures taken to ensure sample security. 	 Sample security is not discussed. However, it is known that at least the bulk samples (and presumably all samples) were taken to the Bureau of Mines Experimental Station in Salt Lake City, Utah.
Audits or reviews	 The results of any audits or reviews of sampling 	 No formal audits have been conducted; however, the data has been referenced and relied upon by

Trigg Minerals Ltd | ACN 168 269 752 A: Level 1, 389 Oxford Street, Mount Hawthorn 6019 E: info@trigg.com.au ASX: TMG www.trigg.com.au

Criteria	JORC Code explanation	Commentary
	techniques and data.	other government agencies, supporting its likely reliability and high standard.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting and any known impediments to obtaining a licence to operate in the area. 	 The Antimony Canyon Project comprises 49 unpatented lode claims, as documented in Appendix 2. These claims are awaiting adjudication by the Bureau of Land Management. The claims are held in trust by Cody Schad on behalf of Trigg Minerals With respect to the unpatented mining claims that are subject to this Agreement, and subject to the paramount title of the United States of America: The unpatented mining claims were properly laid out and monumented; All required location and validation work was performed; Location notices and certificates were properly and timely filed with the appropriate Federal and State offices; All payments and filings required to maintain the claims in good standing have been timely and adequately recorded or filed with the appropriate Federal and State offices; The claims are free and clear of all defects, liens and encumbrances arising by, through or under [Company]; There are no pending or threatened actions, suits, claims or proceedings; and, Trigg is not aware of any conflicting claims. Nothing stated in the foregoing shall be deemed to be a representation or

Criteria	JORC Code explanation	Commentary
		 warranty that any of the unpatented mining claims contains a discovery of minerals The Company can commence non-ground disturbing activity, but claims must be adjudicated before tracks, pads, and drilling ensue The project lies in the Dixie National Forest. Thus, any exploration or development activities in this area would require coordination with the U.S. Forest Service and adherence to federal land management regulations.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Apart from some minor mining activity (extracting 30t) in 1967 from one of the historical mines, no work has been performed since 1942 Before 1967, the last mining occurred and ceased in 1908. All subsequent studies have relied on the Bureau of Mines' 1941 and 1942 results. No new work has been performed since this time.
Geology	 Deposit type, geological setting and style of mineralisation. 	 Antimony mineralisation at Antimony Canyon is primarily hosted within two limey sandstone units near the centre of the Palaeocene Flagstaff Formation, forming a sedimentary package approximately 60 metres. Most high-grade mineralisation occurs as sub-horizontal, lenticular orebodies and pods positioned above the lowermost sandstone—shale unit, within the more massive overlying sandstone. Antimony mineralisation occurs as irregular lenses, rosettes, and veinlets, typically ranging from just over 1 metre to 7 metres thick. The primary ore mineral is

Criteria	JORC Code explanation	Commentary
		stibnite (Sb₂S₃), present as acicular crystals oriented perpendicular to the veinlets and lenses. Gangue minerals include pyrite, realgar, orpiment, fluorite, quartz, kaolinite, and possibly arsenopyrite. This mineral assemblage reflects a hydrothermal origin, with deposition driven by the circulation of mineral-rich fluids through permeable sandstone units. The deposits represent hydrothermal sandy carbonate replacements linked to Tertiary volcanic activity
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: 	 NA - no drilling results reported.
	 easting and northing of the drill hole collar 	
	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar 	
	 dip and azimuth of the hole 	
	 down hole length and interception depth 	
	 hole length. 	

Criteria	JORC Code explanation	Commentary
	 If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. 	 No aggregation methods have been reported. No cut-off grades are reported.
	 Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	
	 The assumptions used for any reporting of metal equivalent values should be clearly stated. 	

Criteria	JORC Code explanation	Commentary
Relationship between mineralisati on widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Vertical channel sampling in 5ft intervals occurred where antimony mineralisation was exposed in trenches. Sampling was not performed where mineralisation could not be discerned. Trenches were spaced relatively evenly along the exposed mineralisation on the canyon walls and were developed perpendicular to the mineralisation trend Exposed mineralisation was mapped and recorded by the U.S. Geological Survey. Sample locations, numbers and results were all captured on various plans and in various reports. No drilling was performed or is being reported on.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Refer to Figure 2 for the location of the project and claim areas. Figure 1 is modified from the mapping and sampling completed by USGS in 1941 and 1942, as reported Duncan and Myers, and released by the Bureau of Mines in 1949 (Assay Date of Samples, Antimony Canyon, Garfield County, Utah. RI 4910)
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced avoiding misleading reporting of Exploration Results. 	 Historical occurrences and interpretation as provided in Figure 2 provide a realistic representation of the nature and grade potential within the pods and lenses that comprise the Antimony Canyon historical resource. They are a metric for prospectivity and are used for determining project acquisition.

Criteria	JORC Code explanation	Commentary
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	All exploration data is open source.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Trigg Minerals will launch a targeted exploration program at Antimony Canyon, prioritising validation and conversion of the historical resource to a JORC- compliant estimate. The program will include geological mapping, geochemical sampling, geophysics, and drilling to define the full extent of mineralisation and evaluate development potential.